Answer:
Option C
Explanation:
From the tree diagram, it follows that
$P(B_{G}) = \frac{46}{80}$, $P(G) = \frac{4}{5}$
$P(B_{G}/G) = \frac{10}{16}$ = $\frac{5}{8}$
$\therefore P(B_{G}\cap G) = \frac{5}{8}\times\frac{4}{5}$ = $\frac{1}{2}$
$\left[\because P(B_{G}\cap G) = P\left(\frac{B_{G}}{G}\times P(G)\right)\right]$
Now , P(G/BG)
$\frac{P(B_{G}\cap G)}{P(B_{G})}=\frac{1}{2}\times\frac{80}{40} = \frac{20}{23}$